Mental exercise

Exponents

PART 1

$$
y=2^{x}
$$

$$
\begin{array}{cccccccccccc}
\frac{1}{32} & \frac{1}{16} & \frac{1}{8} & \frac{1}{4} & \frac{1}{2} & \frac{1}{1} & \frac{2}{1} & \frac{4}{1} & \frac{8}{1} & \frac{16}{1} & \frac{32}{1} & \frac{64}{1} \\
\hline 2^{-5} & 2^{-4} & 2^{-3} & 2^{-2} & 2^{-1} & 2^{0} & 2^{1} & 2^{2} & 2^{3} & 2^{4} & 2^{5} & 2^{6}
\end{array}
$$

$$
y=\pi^{x}
$$

$$
\begin{array}{llllllllllll}
\frac{1}{\pi^{5}} & \frac{1}{\pi^{4}} & \frac{1}{\pi^{3}} & \frac{1}{\pi^{2}} & \frac{1}{\pi} & \frac{1}{1} & \frac{\pi}{1} & \frac{\pi^{2}}{1} & \frac{\pi^{3}}{1} & \frac{\pi^{4}}{1} & \frac{\pi^{5}}{1} & \frac{\pi^{6}}{1} \\
\hline
\end{array}
$$

$$
y=\left(\frac{\pi}{2}\right)^{x}
$$

$$
\frac{32}{\pi^{5}} \quad \frac{16}{\pi^{4}} \quad \frac{8}{\pi^{3}} \quad \frac{4}{\pi^{2}} \quad \frac{2}{\pi} \quad \frac{1}{1} \quad \frac{\pi}{2} \quad \frac{\pi^{2}}{4} \quad \frac{\pi^{3}}{8} \quad \frac{\pi^{4}}{16} \quad \frac{\pi^{5}}{32} \quad \frac{\pi^{6}}{64}
$$

$$
\begin{gathered}
y=a^{x} \\
a>0 \quad a \in \mathbb{R}
\end{gathered}
$$

a is called the "base"
and y is an "exponential function"

Algebraic: 1, 2, 4, 8...

Maybe: a process repeated x times - each step doubles

$$
\begin{aligned}
& x \in \mathbb{N}, \mathbb{Z} \\
& x \in \mathbb{Q} \\
& x \in \mathbb{R}
\end{aligned}
$$

$\frac{1}{1}$	$\frac{\sqrt{5}}{1}$	$\frac{\sqrt[3]{5^{2}}}{1}$	$\frac{5}{1}$		$\frac{25}{1}$
5^{0}	$5^{\frac{1}{2}}$	$5^{\frac{2}{3}}$	5^{1}	$5^{\sqrt{2}}$	5^{2}
5^{π}					

So we may use any positive real as a base
And it is continuous over all real x , positive and negative

$$
y=a^{x}
$$

$$
a>0 \quad a \in \mathbb{R} \quad x \in \mathbb{R}
$$

Can we have symmetric curves? When?

$$
y_{1}=a_{1}^{x} \quad y_{2}=a_{2}^{x}
$$

$$
y_{1}(x)=y_{2}(-x)
$$

$$
a_{1}^{x}=a_{2}^{-x}
$$

$$
a_{1}^{x}=\left(\frac{1}{a_{2}}\right)^{x}
$$

$$
a_{1}=\frac{1}{a_{2}}
$$

Can we have symmetric curves? When?

Immediate properties

The base - a single parameter - entirely specifies the curve

Self-similarity: scaling the curve is identical to translating it

$$
\begin{aligned}
& y(x)=2^{x} \\
& y_{1}(x)=2^{x} \times 2=2^{x+1} \\
& y_{1}(x)=y(x+1)
\end{aligned}
$$

Immediate properties

The base - a single parameter - entirely specifies the curve

Self-similarity: scaling the curve is identical to translating it

$$
\begin{aligned}
& y(x)=2^{x} \\
& y_{1}(x)=2^{x} \times 2=2^{x+1} \\
& y_{1}(x)=y(x+1)
\end{aligned}
$$

$$
y(x)=a^{x}
$$

$$
y_{1}(x)=a^{x} \times b \quad a^{k}=b
$$

$$
y_{1}(x)=a^{x} a^{k}=a^{x+k}=y(x+k)
$$

Immediate properties

The base - a single parameter - entirely specifies the curve

Self-similarity: scaling the curve is identical to translating it
l.e., specifying a "starting size" is the same as just going to the "starting size" portion of the original curve

$$
\begin{array}{lll}
y(x)=a^{x} & y_{1}(x)=P a^{x} \quad P=a^{k} \\
& y_{1}(x)=a^{k} a^{x} & \\
y_{1}(x)=a^{k+x} & \\
y_{1}(x)=y(x+k) &
\end{array}
$$

Immediate properties

The base - a single parameter - entirely specifies the curve

Self-similarity: scaling the curve is identical to translating it
l.e., specifying a "starting size" is the same as just going to the "starting size" portion of the original curve

All exponential plots are tilted, the upward side is always unbounded, the downward side is always bounded
goes to infinity

$$
\begin{aligned}
& S=\sum_{i=0}^{n} r^{i} \\
& r S=\sum_{i=0}^{n} r^{i+1} \\
& r S-S=r^{n+1}-1 \\
& S=\frac{r^{n+1}-1}{r-1} \\
& \\
& =\frac{1-r^{n+1}}{1-r} \\
& \frac{8}{r<1, n \rightarrow \text { inf }} \frac{10}{1-r}
\end{aligned}
$$

↔月円©

Immediate properties

The base - a single parameter - entirely specifies the curve

Self-similarity: scaling the curve is identical to translating it
l.e., specifying a "starting size" is the same as just going to the "starting size" portion of the original curve

All exponential plots are tilted, the upward side is always unbounded, the downward side is always bounded

Thoughts for pause

This surface is continuous over all positive a and all x

Buried in this surface is a special curve, between 2 and 3

Thoughts for pause

This surface is continuous over all positive a and all x

Buried in this surface is a special curve, between 2 and 3

One view: the surfaces are the curves of exponential functions, $a^{\wedge} x$

Thoughts for pause

This surface is continuous over all positive a and all x

Buried in this surface is a special curve, between 2 and 3

One view: the surfaces are the curves of exponential functions, $a^{\wedge} x$

Orthogonal view: the surfaces are curves of
"continuous" polynomials x^{\wedge} a

Thoughts for pause

This surface is continuous over all positive a and all x

Buried in this surface is a special curve, between 2 and 3

One view: the surfaces are the curves of exponential functions, $a^{\wedge} x$

Orthogonal view: the surfaces are curves of
"continuous" polynomials x^{\wedge} a

Exponential functions grow fast

$$
y=2^{x}
$$

END PART 1

PART 2

We saw that a single exponential curve is self-similar

Said differently: each part is a scaled version of another part

How do different exponential curves relate?

All exponential curves are fundamentally a single curve

$$
\begin{aligned}
& y_{1}=a_{1}^{x} \\
& a_{1}=a_{2}^{k} \\
& a_{1}^{x}=\left(a_{2}^{k}\right)^{x} \\
& a_{1}^{x}=a_{2}^{x}
\end{aligned}
$$

Any exponential curve can be expressed as another
All we must do is scale the x -axis appropriately - by k

All exponential curves are fundamentally a single curve

$$
\begin{array}{ll}
y_{1}=2^{x} & y_{2}=8^{x} \\
2=8^{\frac{1}{3}} & 8=2^{3} \\
2^{x}=\left(8^{\frac{1}{3}}\right)^{x} & 8^{x}=\left(2^{3}\right)^{x} \\
2^{x}=8^{\frac{1}{3} x} & 8^{x}=2^{3 x} \\
k=\frac{1}{3} & k=3
\end{array}
$$

Any exponential curve can be expressed as another
All we must do is scale the x -axis appropriately - by k

All exponential curves are fundamentally a single curve

All exponential curves are fundamentally a single curve

Plotting on $3 x$

All exponential curves are fundamentally a single curve

All exponential curves are fundamentally a single curve

Plotting on $x / 3$

All exponential curves are fundamentally a single curve

All exponential curves are fundamentally a single curve
And sections of a curve are self-similar
All sections of all curves map to a single section of a single curve

$$
\begin{array}{lll}
y=a^{x} & & y_{2}=P a_{2}^{x} \\
& a^{k}=a_{2} & \\
& a^{k_{P}}=P & \\
& & y_{2}=a^{k x+k_{P}}
\end{array}
$$

Suppose we chose a single base as the master base

$$
y=a^{b x+c}
$$

All exponential curves are fundamentally a single curve
And sections of a curve are self-similar
All sections of all curves map to a single section of a single curve

$$
\begin{aligned}
& a: \text { master base } \quad \text { (some number) } \\
& b=a^{b x+c} \quad b: \text { conversion to other base } \quad(\text { stretch on } x) \\
& c: \text { shift to starting height } \quad(\text { scale on } y)
\end{aligned}
$$

Suppose we chose a single base as the master base

All exponential curves are fundamentally a single curve

$$
\begin{array}{ll}
y=a^{b x+c} & a=6 \\
& a^{b}=1.4, b=.19 \\
& a^{c}=5, c=.89 \\
& y=a^{b x+c} \\
& y=6^{.19 x+.89}
\end{array}
$$

What should our master base be?

What should our master base be?

What should our master base be?

$$
\begin{aligned}
& f^{\prime}(x): \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& f^{\prime}(x): \lim _{h \rightarrow 0} \frac{a^{x+h}-a^{x}}{h} \\
& f^{\prime}(x): \lim _{h \rightarrow 0} \frac{a^{x}\left(a^{h}-1\right)}{h} \\
& f^{\prime}(x): a^{x} \lim _{h \rightarrow 0} \frac{a^{h}-1}{h} \\
& f^{\prime}(x)=f(x) \times \lim _{h \rightarrow 0} \frac{a^{h}-1}{h}
\end{aligned}
$$

If we choose base a so this limit $=1$, then: $f^{\prime}(x)=f(x)$

What should our master base be?

$$
\begin{gathered}
\lim _{h \rightarrow 0} \frac{a^{h}-1}{h}=1 \\
a^{h}-1=h \\
a^{h}=1+h \\
a=(1+h)^{\frac{1}{h}} \quad n=\frac{1}{h} \\
a=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} \\
f^{\prime}(x)=f(x) \times \lim _{h \rightarrow 0} \frac{a^{h}-1}{h}
\end{gathered}
$$

If we choose base a so this limit $=1$, then: $f^{\prime}(x)=f(x)$

What should our master base be?

$$
\begin{aligned}
& {\left[\frac{2}{1}\right]^{1} \quad\left[\frac{3}{2}\right]^{2}\left[\frac{4}{3}\right]^{3}\left[\frac{5}{4}\right]^{4} \longrightarrow 2.71} \\
& \begin{array}{llll}
2 & 2.25 & 2.37 & 2.44
\end{array}
\end{aligned}
$$

What should our master base be?

Algebraic: 1, 2, 4, 8...

Maybe: a process repeated x times - each step doubles

Maybe: a process of growth. The rate IS the function

All exponential curves are fundamentally a single curve

$$
\begin{array}{ll}
& a: \text { master base (some number) } \\
b=a^{b x+c} & b: \text { conversion to other base } \quad(\text { stretch on } x) \\
c: \text { shift to starting height } \quad(\text { scale on } y)
\end{array}
$$

All exponential curves are fundamentally a single curve

$$
\begin{array}{ll}
& a: \text { master base (some number) } \\
b=e^{b x+c} & b: \text { conversion to other base } \quad(\text { stretch on } x) \\
c: \text { shift to starting height } \quad(\text { scale on } y)
\end{array}
$$

A note on seeing exponential functions
$y=2^{x}$

$$
y=2^{x}
$$

$$
y=2^{x}
$$

$$
y=2^{x}
$$

$$
y=2^{x}
$$

ticks: 10-fold

$$
y=2^{x}
$$

lines: 2-fold

$$
y=2^{x}
$$

lines: 5-fold

$$
y=2.3^{x}
$$

lines: 5-fold

$$
y=2.3^{x}
$$

lines: e-fold

A note on seeing exponential functions

Exponentials are impossible to see well in linear plots

So we create plots where "unit $\mathrm{y}=$ a multiplicative ratio"

These plots render all exponentials linear, since exponentials are just repeated applications of ratios

The base used for y does not matter, nor does the "native" base of the function, those only alter the slope, not the linearity.

END PART 2

